If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+52x-25=0
a = 12; b = 52; c = -25;
Δ = b2-4ac
Δ = 522-4·12·(-25)
Δ = 3904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3904}=\sqrt{64*61}=\sqrt{64}*\sqrt{61}=8\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-8\sqrt{61}}{2*12}=\frac{-52-8\sqrt{61}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+8\sqrt{61}}{2*12}=\frac{-52+8\sqrt{61}}{24} $
| -178=-5x+4(-4x-13 | | 8x+54x-5=11x+10 | | 3/5x-2=1/2 | | 1/2d=10=1 | | s=42/12+17 | | 4(r+5)=5(r=-7 | | 6(x+4)-(6x-24)=0 | | 3y-5y-2y-6=8y-2(9y-6) | | 330=6x+6(5x+7) | | 5−3w=8 | | 9p=198 | | 2x+5(-2x-12)=-12 | | 330=6x=6(-5x=7) | | 3(x+2)=-5-2x-3) | | Z+44=3z+44 | | 4x+-3=6x+11 | | h/6+5/8=-13/8 | | 30+6y=11y | | 1/6x+4-5/6x=3 | | 7x+4(1/4x-5)=9x+2x+12 | | Y=-7E-06x+0.0002 | | 7y-10=27.30 | | 2b+24=−4b+18 | | 4(5x+3)-9x=11x | | 5x^2+3x-195=0 | | x-5+3x2x=-4 | | 4{x+2}=16 | | c+5/8=6 | | 2x+6=x^2+6x+9 | | -8s+4s+63s=6 | | -9x+5x=32+8 | | 2x+51=5x-4=7x+7 |